Exercise 3.4.3

Suppose that $f(x)$ is continuous [except for a jump discontinuity at $x=x_{0}, f\left(x_{0}^{-}\right)=\alpha$ and $\left.f\left(x_{0}^{+}\right)=\beta\right]$ and $d f / d x$ is piecewise smooth.
(a) Determine the Fourier sine series of $d f / d x$ in terms of the Fourier cosine series coefficients of $f(x)$.
(b) Determine the Fourier cosine series of $d f / d x$ in terms of the Fourier sine series coefficients of $f(x)$.

Solution

Part (a)
Since $f(x)$ is continuous, it's piecewise smooth on the interval $0 \leq x \leq L$, so it has a Fourier cosine series representation.

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

The coefficients are known to be

$$
\begin{aligned}
& A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \\
& A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x .
\end{aligned}
$$

$d f / d x$ is expected to be a series of sines; because it's also piecewise smooth, it has a Fourier sine series representation.

$$
\frac{d f}{d x}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

The aim is to determine B_{n}. Multiply both sides of equation by $\sin \frac{p \pi x}{L}$, where p is an integer,

$$
\frac{d f}{d x} \sin \frac{p \pi x}{L}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} \sin \frac{p \pi x}{L} d x & =\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x \\
& =\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x
\end{aligned}
$$

Since the sine functions are orthogonal, this integral on the right is zero if $n \neq p$. Only if $n=p$ does it yield a nonzero result.

$$
\int_{0}^{L} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x=B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x
$$

Evaluate the integral on the right.

$$
\int_{0}^{L} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x=B_{n}\left(\frac{L}{2}\right)
$$

Solve for B_{n}.

$$
\begin{aligned}
B_{n} & =\frac{2}{L} \int_{0}^{L} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x \\
& =\frac{2}{L}\left(\int_{0}^{x_{0}^{-}} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x+\int_{x_{0}^{+}}^{L} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x\right) \\
& =\frac{2}{L}\left[\left.f(x) \sin \frac{n \pi x}{L}\right|_{0} ^{x_{0}^{-}}-\int_{0}^{x_{0}^{-}} f(x) \frac{d}{d x}\left(\sin \frac{n \pi x}{L}\right) d x+\left.f(x) \sin \frac{n \pi x}{L}\right|_{x_{0}^{+}} ^{L}-\int_{x_{0}^{+}}^{L} f(x) \frac{d}{d x}\left(\sin \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[f\left(x_{0}^{-}\right) \sin \frac{n \pi x_{0}^{-}}{L}-f\left(x_{0}^{+}\right) \sin \frac{n \pi x_{0}^{+}}{L}-\int_{0}^{L} f(x) \frac{d}{d x}\left(\sin \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[\alpha \sin \frac{n \pi x_{0}}{L}-\beta \sin \frac{n \pi x_{0}}{L}-\int_{0}^{L} f(x)\left(\frac{n \pi}{L} \cos \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}(\alpha-\beta) \sin \frac{n \pi x_{0}}{L}-\frac{n \pi}{L}\left[\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right]
\end{aligned}
$$

Therefore,

$$
B_{n}=\frac{2}{L}(\alpha-\beta) \sin \frac{n \pi x_{0}}{L}-\frac{n \pi}{L} A_{n} .
$$

Part (b)

Since $f(x)$ is continuous, it's piecewise smooth on the interval $0 \leq x \leq L$, so it has a Fourier sine series representation.

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

The coefficients are known to be

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x .
$$

$d f / d x$ is expected to be a series of cosines; because it's also piecewise smooth, it has a Fourier cosine series representation.

$$
\begin{equation*}
\frac{d f}{d x}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

The aim is to determine A_{0} and A_{n}. Start by integrating both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} d x & =\int_{0}^{L}\left(A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}\right) d x \\
& =A_{0} \int_{0}^{L} d x+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0}
\end{aligned}
$$

Evaluate the integral on the right.

$$
\int_{0}^{L} \frac{d f}{d x} d x=A_{0}(L)
$$

Solve for A_{0}.

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L} \frac{d f}{d x} d x \\
& =\frac{1}{L}\left(\int_{0}^{x_{0}^{-}} \frac{d f}{d x} d x+\int_{x_{0}^{+}}^{L} \frac{d f}{d x} d x\right) \\
& =\frac{1}{L}\left[f\left(x_{0}^{-}\right)-f(0)+f(L)-f\left(x_{0}^{+}\right)\right]
\end{aligned}
$$

Therefore,

$$
A_{0}=\frac{1}{L}[\alpha-\beta+f(L)-f(0)] .
$$

To obtain A_{n}, multiply both sides of equation (1) by $\cos \frac{p \pi x}{L}$, where p is an integer,

$$
\frac{d f}{d x} \cos \frac{p \pi x}{L}=A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d f}{d x} \cos \frac{p \pi x}{L} d x & =\int_{0}^{L}\left(A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right) d x \\
& =A_{0} \underbrace{\int_{0}^{L} \cos \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x
\end{aligned}
$$

Because the cosine functions are orthogonal, this second integral on the right is zero if $n \neq p$. Only if $n=p$ does it yield a nonzero value.

$$
\int_{0}^{L} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x=A_{n} \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x
$$

Evaluate the integral on the right.

$$
\int_{0}^{L} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x=A_{n}\left(\frac{L}{2}\right)
$$

Solve for A_{n}.

$$
\begin{aligned}
A_{n} & =\frac{2}{L} \int_{0}^{L} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x \\
& =\frac{2}{L}\left(\int_{0}^{x_{0}^{-}} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x+\int_{x_{0}^{+}}^{L} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x\right) \\
& =\frac{2}{L}\left[\left.f(x) \cos \frac{n \pi x}{L}\right|_{0} ^{x_{0}^{-}}-\int_{0}^{x_{0}^{-}} f(x) \frac{d}{d x}\left(\cos \frac{n \pi x}{L}\right) d x+\left.f(x) \cos \frac{n \pi x}{L}\right|_{x_{0}^{+}} ^{L}-\int_{x_{0}^{+}}^{L} f(x) \frac{d}{d x}\left(\cos \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[f\left(x_{0}^{-}\right) \cos \frac{n \pi x_{0}^{-}}{L}-f(0)+f(L) \cos n \pi-f\left(x_{0}^{+}\right) \cos \frac{n \pi x_{0}^{+}}{L}-\int_{0}^{L} f(x) \frac{d}{d x}\left(\cos \frac{n \pi x}{L}\right) d x\right]
\end{aligned}
$$

Continue the simplification.

$$
\begin{aligned}
A_{n} & =\frac{2}{L}\left[\alpha \cos \frac{n \pi x_{0}}{L}-f(0)+f(L)(-1)^{n}-\beta \cos \frac{n \pi x_{0}}{L}-\int_{0}^{L} f(x)\left(-\frac{n \pi}{L} \sin \frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[(\alpha-\beta) \cos \frac{n \pi x_{0}}{L}+f(L)(-1)^{n}-f(0)\right]+\frac{n \pi}{L}\left[\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right]
\end{aligned}
$$

Therefore,

$$
A_{n}=\frac{2}{L}\left[(\alpha-\beta) \cos \frac{n \pi x_{0}}{L}+f(L)(-1)^{n}-f(0)\right]+\frac{n \pi}{L} B_{n} .
$$

